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1 Allocations and Payoffs

As stated in the main paper, the primary fitness payoff to an individual is a
function of the fraction of the resource consumed, v, and the returns to con-
sumption, x. This payoff is given by:

π(v) = vx

An individual also benefits secondarily from any increase in his partner’s fitness
payoff, to an extent governed by the degree of interdependence, s. Given that
the partner consumes whatever the focal individual does not (1 − v), the total
payoff for the focal player of any given allocation is:

πfocal(v) = vx + s(1− v)
x

(1)

Since the partner obtains a fraction 1 − v of the resource, the partner’s payoff
for a given allocation to the focal individual is:

πpartner(v) = (1− v)
x

+ svx (2)

When should the focal player prefer to give an extra unit of the resource to
the partner rather than keeping it for himself? This means asking when an
allocation of i units to the focal gives a better fitness payoff than an allocation
of j units, where i < j. This will be the case when:
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ix + s(1− i)x > jx + s(1− j)x

Rearranging:
s[(1− i)x − (1− j)x] > jx − ix (3)

Since the benefit to the partner of an extra unit of resource is the increase in
the partner’s personal payoff (1− i)x− (1− j)x , and the cost to the focal is the
decrease in his personal payoff jx − ix , we can rewrite Inequality (3) as sb > c.
This inequality states the general condition which must be satisfied for the focal
to be selected to transfer a unit of resource to the partner if no other costs are
present. It is intuitive, since sb represents the focal’s secondary payoff from a
payoff of b to the partner, and thus the inequality amounts to the requirement
that the focal’s secondary gain must exceed his primary loss if he is to benefit
from transferring a unit of resource to the partner.

The fitness payoffs for the focal and the partner (from (1) and (2)) under dif-
ferent allocations of the resource, and different parameter settings, are plotted
in figure 1 of the main paper. When returns are diminishing (x < 1) and the
two players have a stake in one another (s > 0; the subplot in the top row,
second column, and the subplot in the top row, third column) a player’s payoff
reaches a maximum when he allocates less than all of the resource to himself
(0 < v < 1).

To find the allocation which maximizes a player’s payoff when returns are di-
minishing (x < 1), we differentiate Equation (1) with respect to the fraction
allocated to him, which gives us:

dπ

dv
= xvx−1 − sx(1− v)

x−1

or:
dπ

dv
= x

(
vx−1 − s(1− v)

x−1
)

(4)

Equation (4) equals zero either when x = 0 or when

vx−1 − s(1− v)
x−1

= 0 (5)

Equation (5) can be rewritten as:

s =

(
v

1− v

)x−1

Solving for v:
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s
1

x−1 =
v

1− v

Resulting in:

v̂ =
s

1
x−1

1 + s
1

x−1

(6)

Equation (6) is plotted in Supplementary Figure 1. v̂ represents the share of the
resource that a player would optimally allocate to himself if he can completely
and costlessly control the allocation. When returns are linear or accelerating
(x ≥ 1) or there is no interdependence (s = 0) a player prefers all of the resource
for himself (v̂ = 1). When returns are diminishing (x < 1) and the two players
have a stake in one another (s > 0) a player prefers less than all of the resource
(v̂ < 1).
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Figure 1: Optimal share sought as a function of returns and interdependence.
Numbers within the shaded regions depict the range of fractions of the resource
a player would prefer to allocate to himself, v̂.

With diminishing returns and interdependence, we can use the “optimal” allo-
cation, given by Equation (6), to compute the payoff a player would gain if he
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controls the allocation, and the payoff he would gain if he concedes control of
the allocation to his partner. These payoffs are respectively given by:

π(v̂) = v̂x + s(1− v̂)x (7)

and:

π(1− v̂) = (1− v̂)x + sv̂x (8)

The difference between (7) and (8), which we label Bown−cede, is given by:

Bown−cede = (1− s)v̂x + (s− 1)(1− v̂)x

This can be rewritten as:

Bown−cede = (1− s)
(
v̂x − (1− v̂)x

)
(9)

Bown−cede represents the net benefit from controlling the resource over ceding
control to the other party (i.e., the payoff difference to a player between con-
trolling the resource completely or letting his partner control it). Equation (9)
is plotted in figure 2 of the main paper.

From Equation (9) we can see:

• The benefit of controlling the allocation decreases as interdependence in-
creases.

• The benefit of controlling the allocation increases as returns to consump-
tion increase.

2 Costs

We consider two types of cost: an ownership cost, o and a conflict cost, c. The
ownership cost represents the cost of staking a claim to the allocation of the
resource, and monitoring whether this claim is being respected. The conflict cost
is contingent on the other player’s behaviour; if the other player also attempts
ownership, then a conflict erupts and it is costly for both players to settle it.
Note here the similarities and differences with Maynard Smith’s (1982) HAWK–
DOVE model. In that model, there is no cost of making an ownership claim
(no equivalent of our o). There is a cost of conflict c, but this is only paid
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by the loser of the conflict, whereas our conflict cost is paid by both parties.
This latter difference is unimportant. The consequential difference between our
model and the HAWK–DOVE model as regards costs is the introduction of o,
and this model reduces to the HAWK–DOVE model in the case where s = 0,
x = 1, and o = 0.

If the focal player pays the ownership cost o and his partner does not, the focal
player controls the allocation and takes v̂ for himself, leaving (1 − v̂) for the
other. If neither player pays the ownership cost, both players begin to consume
the resource, and we assume that each player will, on average, consume half of
the resource. If both players pay the ownership cost, there is a conflict, which
imposes a further cost c on both players. The conflict is decided in favour of one
player or the other with equal probability. Note that when costs are paid, they
affect both the payoff of the player paying them, and the payoff of the other
player, scaled by s.

These costs should be thought of as fractions of the maximum value of the
resource. If a player consumes all of the resource, the payoff is 1, regardless of
the returns on consumption. Thus, a value of o = 0.1 and c = 0.2 implies that
the cost of claiming ownership of the resource is 10% of the value of the resource
and the cost of a conflict over the allocation is 20% of the value of the resource.

3 Strategies and Interaction Payoffs

We consider three behavioural strategies.

• SHARE does not attempt to control the resource allocation, and conse-
quently never pays the ownership cost o. If the other player attempts to
control the resource, an individual playing SHARE cedes the resource and
consumes the remainder left him, (1− v̂). When two SHAREs meet, since
neither claims ownership, they end up consuming half the resource each.
The SHARE captures the empirically-observed relational model of Com-
munal Sharing, in that SHAREs neither attempt to own the resource, nor
control the other party’s access it (Fiske, 1991).

• DOMINATE attempts to control the resource allocation, always paying
the ownership cost o. If the other player does not attempt to control the
resource, an individual playing DOMINATE consumes a fraction v̂ of the
resource, leaving 1 − v̂ to the other player. If the other player attempts
to control the resource too, paying the ownership cost, a conflict erupts.
In the event of a conflict, both players must expend the conflict cost, c.
In half of these disputes, an individual playing DOMINATE succeeds in
controlling the allocation, garnering a fraction v̂ of the resource for himself;
in the other half, he loses control of the resource and consumes only 1− v̂.
This strategy represents the attempt to exert private property rights.

5



• LOTTERY plays either the SHARE strategy or the DOMINATE strategy
with equal likelihood, using some freely available cue to decide which (for
example, when arriving first, plays DOMINATE, and arriving second,
plays SHARE). The consequence of this convention is that two individuals
playing LOTTERY avoid any disputes and never have to pay the conflict
cost c.

The DOMINATE and SHARE strategies considered in this model are analagous
to HAWKS and DOVES in Maynard Smith’s (1982) canonical model of resource
conflict, whilst the LOTTERY strategy is a homologue of the BOURGEOIS
strategy, in that it uses an uncorrelated asymmetry as a convention to avoid
disputes.

Supplementary Table 1 defines the payoffs for the row player for all possible
interaction pairs.

Table 1: Interaction Payoffs

Strategy SHARE DOMINATE LOTTERY
SHARE πS,S πS,D πS,L

DOMINATE πD,S πD,D πD,L

LOTTERY πL,S πL,D πL,L

We now derive each of the nine possible interaction payoffs listed in Supplemen-
tary Table 1.

• The payoff for playing SHARE against another SHARE is the payoff for
consuming half the resource, namely:

πS,S = π(0.5) = 0.5x + 0.5sx

Rearranging:

πS,S = π(0.5) = (1 + s)0.5x

• When SHARE meets DOMINATE, the payoff is:

πS,D = π(1− v̂)− so

• When SHARE meets LOTTERY, the LOTTERY attempts to control the
resource half the time and otherwise doesn’t attempt control, resulting in
the payoff:

πS,L = 0.5πS,D + 0.5πS,S
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• When DOMINATE meets SHARE, the payoff is:

πD,S = π(v̂)− o

• When DOMINATE meets DOMINATE, there is always a dispute, with
both players paying both the ownership cost, o, and the conflict cost, c.
Each combatant will, on average, control the resource allocation half the
time, resulting in the payoff:

πD,D = 0.5
(
π(v̂) + π(1− v̂)

)
− (1 + s)(o+ c)

Substituting (7) and (8) into this expression, we have:

πD,D = 0.5
(
v̂x + s(1− v̂)x + (1− v̂)x + sv̂x

)
− (1 + s)(o+ c)

This simplifies to:

πD,D = (1 + s)
[
0.5
(
v̂x + (1− v̂)x

)
− (o+ c)

]
• When DOMINATE meets LOTTERY, the LOTTERY attempts to con-

trol the resource half the time and cedes the control otherwise, resulting
in the payoff:

πD,L = 0.5πD,D + 0.5πD,S

• When LOTTERY meets SHARE, the LOTTERY attempts to control the
resource half the time and otherwise doesn’t attempt control, resulting in
the payoff:

πL,S = 0.5πD,S + 0.5πS,S

• When LOTTERY meets DOMINATE, the LOTTERY attempts to con-
trol the resource half the time and cedes the control otherwise, resulting
in the payoff:

πL,D = 0.5πD,D + 0.5πS,D

• When LOTTERY meets LOTTERY, we assume that the two individu-
als coordinate without conflict; during each turn, one player controls the
resource and the other cedes control, resulting in the payoff:

πL,L = 0.5πD,S + 0.5πS,D
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4 Evolutionary Dynamics

We can now calculate the evolutionary dynamics following Maynard Smith
(1982). For each parametric combination, we want to find the evolutionarily
stable strategies (ESSs). There are eight such possibilities:

1. No strategy is an ESS, resulting in a three-way polymorphism.

2. There is a polymorphic ESS between SHARE and DOMINATE.

3. There is a polymorphic ESS between SHARE and LOTTERY.

4. There is a polymorphic ESS between LOTTERY and DOMINATE.

5. SHARE is the only ESS.

6. DOMINATE is the only ESS.

7. LOTTERY is the only ESS.

8. Both SHARE and DOMINATE are ESSs.

9. Both SHARE and LOTTERY are ESSs.

10. Both DOMINATE and LOTTERY are ESSs.

11. All three strategies are ESSs.

Using the interaction payoffs listed in previous section, we derive the following
results:

If LOTTERY is an ESS, then neither SHARE nor DOMINATE are
ESSs. To see why, we find the conditions when LOTTERY is an ESS. In order
for LOTTERY to be an ESS, LOTTERY must be an ESS against both SHARE
and DOMINATE. We first find when LOTTERY is an ESS against SHARE.

πL,L > πS,L

0.5πD,S + 0.5πS,D > 0.5πS,D + 0.5πS,S

πD,S > πS,S (10)

Next, we find when LOTTERY is an ESS against DOMINATE.

πL,L > πD,L

0.5πD,S + 0.5πS,D > 0.5πD,D + 0.5πD,S

πS,D > πD,D (11)
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From these two results, we can see that LOTTERY is an ESS if DOMINATE
can invade a population of SHARE (10) and SHARE can invade a population
of DOMINATE (11). So, if LOTTERY is an ESS, then neither SHARE nor
DOMINATE are ESSs, eliminating possibilities 9, 10, and 11 from the list above.

We can also eliminate possibility 1 (i.e., no strategy is an ESS). For there to
be no ESS, each strategy can invade a population of comprised of one of the
other two strategies. With three strategies, there are six such inequalities which
must be simultaneously satisfied. Inequalities (10) and (11) are two of these six.
However, when (10) and (11) are satisfied, LOTTERY is an ESS against both
SHARE and DOMINATE.

SHARE and LOTTERY cannot be part of a polymorphic ESS. For
both of the strategies to be part of a polymorphic ESS, each would have to be
able to invade a population of the other. For SHARE to invade a population of
LOTTERY requires:

πS,L > πL,L

0.5πS,D + 0.5πS,S > 0.5πD,S + 0.5πS,D

πS,S > πD,S (12)

And for LOTTERY to invade a population of SHARE requires:

πL,S > πS,S

0.5πD,S + 0.5πS,S > πS,S

πD,S > πS,S (13)

Inequalities (12) and (13) cannot be simultaneously satisfied, so SHARE and
LOTTERY cannot exist in a polymorphic ESS, thereby eliminating possibility
3 from the list above.

DOMINATE and LOTTERY cannot be part of a polymorphic ESS.
For both of the strategies to be part of a polymorphic ESS, each would have
to be able to invade a population of the other. For DOMINATE to invade a
population of LOTTERY requires:

πD,L > πL,L

0.5πD,D + 0.5πD,S > 0.5πD,S + 0.5πS,D

πD,D > πS,D (14)
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And for LOTTERY to invade a population of DOMINATE requires:

πL,D > πD,D

0.5πD,D + 0.5πS,D > πD,D

πS,D > πD,D (15)

Inequalities (14) and (15) cannot be simultaneously satisfied, so DOMINATE
and LOTTERY cannot exist in a polymorphic ESS, thereby eliminating possi-
bility 4 from the list above.

If SHARE is an ESS against DOMINATE (πS,S > πD,S), then SHARE
is also an ESS against LOTTERY (πS,S > πT,S). This follows because
LOTTERY alternates between SHARE and DOMINATE when playing SHARE.
Thus, on half the interactions, a LOTTERY will match the payoff of a SHARE ;
on the other half, a LOTTERY will have a lower payoff.

If DOMINATE is an ESS against SHARE (πD,D > πS,D), then DOM-
INATE is also an ESS against LOTTERY (πD,D > πT,D). This follows
because LOTTERY alternates between SHARE and DOMINATE when play-
ing DOMINATE. Thus, on half the interactions, a LOTTERY will match the
payoff of a DOMINATE ; on the other half, a LOTTERY will have a lower
payoff.

The preceding analyses pare down the list of possible evolutionary outcomes to:

• There is a polymorphic ESS between SHARE and DOMINATE.

• SHARE is the only ESS.

• DOMINATE is the only ESS.

• LOTTERY is the only ESS.

• Both SHARE and DOMINATE are ESSs.

Before we find the conditions for these evolutionary outcomes, we examine the
SHARE–DOMINATE polymorphic ESS more closely.

What is the distribution of SHARE and DOMINATE at the poly-
morphic ESS? Let p̂ be the fraction of DOMINATE at the polymorphic ESS.
At this polymorphic ESS, the payoff of SHARE and DOMINATE will be the
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same, an individual will interact with a partner playing the DOMINATE with
probability p̂, and interact with a partner playing the SHARE with probability
1− p̂:

p̂πD,D + (1− p̂)πD,S = p̂πS,D + (1− p̂)πS,S

Solving for p̂:

p̂ =
πS,S − πD,S

πD,D − πS,D − πD,S + πS,S
(16)

Can LOTTERY invade this polymorphic ESS? Inequalities (10) and (11)
show us that LOTTERY is an ESS whenever SHARE can invade DOMINATE
and vice versa (i.e., when there is a polymorphic ESS between the two strate-
gies). Suppose that the population is at the SHARE–DOMINATE polymorphic
ESS. We can ask whether LOTTERY can invade. For this to happen, the payoff
of a mutant LOTTERY must be higher than the payoff of the residents, com-
prised of a mix of SHARE and DOMINATE. At the polymorphic equilibrium,
the payoff of SHARE and DOMINATE will be same, so we can compare the
payoff of a mutant LOTTERY with the payoff of either the SHARE or DOMI-
NATE strategies. Here, we compare the payoff of a mutant LOTTERY against
a SHARE :

p̂πL,D + (1− p̂)πL,S > p̂πS,D + (1− p̂)πS,S

Solving for p̂:

p̂ >
πS,S − πD,S

πD,D − πS,D − πD,S + πS,S
(17)

From Equation (16), we see that the right-hand side of Inequality (17) is equal
to p̂. Making this substitution, Inequality (17) becomes p̂ > p̂, a condition
which cannot be satisfied; LOTTERY cannot invade a population of SHARE
and DOMINATE.

In fact, the payoff of a LOTTERY is the same as the payoff of residents of a
SHARE–DOMINATE equilibrium. The same situation occurs with the BOUR-
GEOIS strategy against a population of HAWKS and DOVES (Maynard Smith,
1982). In order to transition from the SHARE–DOMINATE polymorphic ESS
to the LOTTERY ESS, some kind of assortment is required, like kin-biased
interaction, which increases the probability of mutant LOTTERIES interacting
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with one another above chance. With such assortment, selection will result in
the LOTTERY ESS.

To prove this, we introduce a new model parameter, r, meant to represent non-
random assortment, which could be generated through kin-biased interactions,
for example. Again, we let p̂ represent the frequency of DOMINATE at the
polymorphic equilibrium between DOMINATE and SHARE. When considering
rare mutants playing LOTTERY, the frequency of LOTTERY is approximately
zero and so the frequency of SHARE will be approximately 1− p̂.

As the overall frequency of LOTTERY is close to zero, the average payoff of
DOMINATE and SHARE will be dominated by interactions with others play-
ing DOMINATE and SHARE. As such, we can assign the probability of either
a DOMINATE or SHARE interacting with a LOTTERY to be approximately
zero. Additionally, we can assign the probability of LOTTERY interacting with
another LOTTERY above and beyond r, the non-random assortment parame-
ter, to be approximately zero.

With these assumptions, we can define the probabilities of forming different
types of pairs. We denote these probabilities with Pr(i|j) which represents
the probability of interacting with a partner playing strategy i given the focal
individual plays strategy j.

Pr(D|D) = r + (1− r)p̂
P r(S|D) = (1− r)(1− p̂)
Pr(L|D) ≈ 0

Pr(D|S) = (1− r)p̂
P r(S|S) = r + (1− r)(1− p̂)
Pr(L|S) ≈ 0

Pr(D|L) = (1− r)p̂
P r(S|L) = (1− r)(1− p̂)
Pr(L|L) ≈ r

(18)

In order to derive the equilibrium distribution of DOMINATE and SHARE, we
find when their expected payoffs are equal:

Pr(D|D)πD,D + Pr(S|D)πD,S = Pr(D|S)πS,D + Pr(S|S)πS,S

Substituting the interaction probabilities into (18), and solving for p̂, we have:
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p̂ =
πS,S − (1− r)πD,S − rπD,D

(1− r)
(
πD,D − πD,S − πS,D + πS,S

) (19)

Note, when r = 0, Equation (19) reduces to Equation (16).

Next, to determine whether LOTTERY can invade with non-random assort-
ment, we find when the payoff of a mutant playing LOTTERY is higher than
the payoff of a resident. (Note, at the polymorphic equilibrium, the payoff
of SHARE and DOMINATE will be same, so we can compare the payoff of
a mutant LOTTERY with the payoff of either the SHARE or DOMINATE
strategies. Here, we compare the payoff of a mutant LOTTERY against a
SHARE.)

Pr(D|L)πL,D + Pr(S|L)πL,S + Pr(L|L)πL,L > Pr(D|S)πS,D + Pr(S|S)πS,S

Substituting in the interaction probabilities from (18), and solving for p̂, we
have:

p̂ >
πS,S(1 + r)− πD,S − rπS,D

(1− r)
(
πD,D − πD,S − πS,D + πS,S

) (20)

Note, when r = 0, Inequality (20) reduces to Inequality (17).

If we now substitute the equilibrium fraction of DOMINATE, derived in Equa-
tion (19), for p̂ in the left-hand side of Inequality (20), we have:

πS,S − (1− r)πD,S − rπD,D

(1− r)
(
πD,D − πD,S − πS,D + πS,S

) > πS,S(1 + r)− πD,S − rπS,D
(1− r)

(
πD,D − πD,S − πS,D + πS,S

)
With some algebra and substitutions, this reduces to:

c > 0.5x − 0.5
(
v̂x − (1− v̂)x

)
(21)

With linear returns (x = 1), a self-interested individual would prefer all of the
resource for himself (v̂ = 1). Making these substitutions, condition (21) becomes
c > 0. This means that, with any amount of assortment (r > 0), LOTTERY
will invade a mix of SHARE and DOMINATE if there is any cost to resource
conflict.
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With accelerating returns (x > 1), a self-interested individual would again prefer
all of the resource for himself (v̂ = 1). Substituting in these values, condition
(21) becomes:

c > 0.5x − 0.5

When returns accelerate (x > 1), the required cost of conflict is negative (c < 0).
So, with accelerating returns, LOTTERY will always invade a mix of SHARE
and DOMINATE, whatever the cost of conflict.

With diminishing returns (x < 1), the invasibility of LOTTERY is more com-
plicated. Condition (21) is plotted below in Supplementary Figure 2, showing
the minimum conflict cost (c) for LOTTERY to invade an equilibrium mix of
DOMINATE and SHARE as a function of interdependence (s) and returns (x).
As interdependence increases from zero to one, this minimum cost rapidly di-
minishes to zero. The threshold conflict cost reaches a maximum at returns
intermediate between zero and one. So, when interdependence is near zero and
the returns exponent is around 0.4, the minimum conflict cost reaches its maxi-
mum around 0.2 or 20% of the value of the resource if consumed completely by
one person.

When the conflict cost is below the threshold value (i.e., Condition (21) is not
satisfied), LOTTERY has the same payoff as residents of the mixed equilib-
rium; LOTTERY can only increase in frequency through drift, and when the
frequency of LOTTERY is sufficiently high, selection will drive the population
to the LOTTERY ESS. When the conflict cost is above the threshold, LOT-
TERY will invade and go to fixation when there is any non-random assortment
(r > 0).

We now return to finding the conditions for the remaining evolutionary out-
comes.

When is DOMINATE an ESS? As previously shown, when DOMINATE
is an ESS over SHARE, DOMINATE is also an ESS over LOTTERY. The
condition for DOMINATE to be an ESS over SHARE is given below.

πD,D > πS,D

0.5
(
π(v̂) + π(1− v̂)

)
− (1 + s)(o+ c) > π(1− v̂)− so

0.5
(
π(v̂)− π(1− v̂)

)
> o+ c(1 + s)

0.5Bown−cede > o+ c(1 + s) (22)
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Figure 2: Minimum conflict cost for LOTTERY to invade an equilibrium mix
of DOMINATE and SHARE as a function of interdependence (s) and returns
exponent (x).

When is SHARE an ESS? As previously shown, when SHARE is an ESS
over DOMINATE, SHARE is also an ESS over LOTTERY.

πS,S > πD,S

π(0.5) > π(v̂)− o
π(v̂)− π(0.5) < o

We re-label π(v̂)− π(0.5) as Bown−share, which represents the payoff difference
between owning the resource (hence, controlling the allocation) and sharing it.
(Note that this is not the same as Bown−cede, which is the payoff difference
between owning the resource and the other player owning it). This results in:

Bown−share < o (23)
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That is, SHARE is an ESS when the difference between controlling the al-
location of the resource and sharing it (Bown−share) is less than the cost of
making an ownership claim, an intuitive result. Notice, the conflict cost doesn’t
enter into Inequality (23). In Maynard Smith’s (1982) model, this kind of out-
come (i.e., an evolutionarily stable population of DOVES ) is not possible, since
that model had no necessary cost of making an ownership claim. In the cur-
rent model, SHARE does increasingly well as o becomes larger, and also as
Bown−share becomes smaller, which it does as interdependence increases and/or
returns become more steeply diminishing.

When is there a polymorphic ESS between SHARE and DOMI-
NATE? Or, when is LOTTERY an ESS? As previously shown, both
of these outcomes happen under the same conditions.

In order for SHARE and DOMINATE to be a polymoprhic ESS, each strategy
must be able to invade a population of the other.

There is a polymorphic ESS between SHARE and DOMINATE when SHARE
can invade a population of DOMINATE and DOMINATE can invade a popula-
tion SHARE. This situation occurs when neither Inequality (22) nor Inequality
(23) are satisfied.

Bown−share > o > 0.5Bown−cede − c(1 + s) (24)

When are both SHARE and DOMINATE ESSs? This occurs when both
Inequalities (22) and (23) are satisfied.

0.5Bown−cede − c(1 + s) > o > Bown−share (25)

This is an interesting case, which does not occur in Maynard Smith’s HAWK–
DOVE model. When condition (25) is satisfied, either SHARE or DOMINATE
can be an ESS. The evolutionary outcome will be determined by path depen-
dence; resource allocation can be based on domination or sharing. Note, even
though either strategy can be an ESS, a population playing SHARE will always
have higher average payoffs than a population playing DOMINATE. If there
is any type of selection process which favors the equilibrium with the higher
average payoff, allocations based on sharing should be more common than allo-
cations based on domination.

Putting Conditions (22), (23), (24), and (25) together, Supplementary Table 2
shows when each of the four evolutionary outcomes result.
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Table 2: Evolutionary Outcomes

0.5Bown−cede > o+ c(1 + s) 0.5Bown−cede < o+ c(1 + s)
Bown−share < o DOMINATE and SHARE ESS SHARE ESS
Bown−share > o DOMINATE ESS LOTTERY ESS

The definitions of the parameters in Supplementary Table 2 are given below:

• Bown−cede = π(v̂)−π(1− v̂). Bown−cede represents the difference in payoff
between controlling the allocation of the resource π(v̂) and ceding control
of the allocation to the other player π(1− v̂).

• Bown−share = π(v̂)−π(0.5). Bown−share represents the difference in payoff
between controlling the allocation of the resource π(v̂) and sharing the
resource qually with the other player π(0.5).

• o represents the cost of claiming ownership of the resource.

• c represents the cost of a conflict, when both players claim ownership of
the resource.

• s represents interdependence, the benefit that each player derives from
having the other in the interaction environment.

The evolutionarily stable outcomes are plotted for a range of parameter values
in figure 3 of the main paper.
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