
Detailed appendix for “A Tale of Two Defectors” 
 
In this document, I go through some of mathematical steps in deriving the results for the 
paper.  Unfortunately, many of these steps were omitted from the appendix attached to 
the paper due to length issues.  You should keep in mind that I have not really gone 
through this thoroughly, so there may be errors.  If you find any, please let me know. 
 
In laying out some of the logic of the model, I will show how some of steps that were 
omitted in the original derivations are calculated.  Along the way there may be some 
things that I discuss that will be helpful in understanding the derivations of and the logic 
behind other papers that deal with cooperation from and evolutionary game-theoretic 
perspective.  If there are steps that are too basic, I apologize. 
 
In our paper, we are making a model of the social dynamics of reputation.  That is, what 
happens when individuals know how their fellow community members behave with one 
another and can use that information to behave contingently? 
 
To begin, we define the rules of the game.  In our game, individuals interact with a 
randomly selected partner in each period and play a one-shot prisoners’ dilemma.  After 
the first round, individuals know, with some fixed probability, what their current partner 
did in the last period (i.e., cooperate or defect).  Additionally, they know what the 
standings (or reputation) of both their current partner and his/her previous partner.  With 
these three pieces of information, an individual can come up with an assessment rating 
(or standing) of their current partner.  Obviously, in the real world, this information 
doesn’t come for free.  There must some process, such as direct observation or gossip, 
that disseminates such information.  It’s okay that we ignore such a process in our model 
as we are not particularly interested in that question.  Instead, building on the pioneering 
work of Nowak and Sigmund (1998), we want to know what types of reputation-
assigning rules can stabilize cooperation.  In their model, Nowak and Sigmund consider 
an image-scoring rule where individuals only attend to the behavioral decision of their 
partners (i.e., cooperate or defect).  Such a rule does not take into account the context of 
that interaction (i.e., was a particular act of defection motivated by greed or an intent to 
withhold cooperation from a cheater).  In our paper, we show that such a strategy is not 
evolutionarily stable because it ends of punishing individuals who punish cheaters.  We 
show, however, that a standing rule is evolutionarily stable.  Such a rule takes context 
into account (i.e., an individual’s reputation is not tarnished if she refuses to help a 
known cheat).  Intuitively, such a reputation-assignment rule feels right.  However, 
intuition often fails when processes become complex.  That’s why we turn to simple 
model building. 
 
Okay, we know how a particular round of social interaction works.  We next set up the 
rules for deciding how many periods of there will be.  This will be important in 
understanding the evolutionary dynamics of the system.   
 
There is always one bout of indirect reciprocity in our model.  Afterwards, with 
probability w, the game goes on for another bout.  If we reach a second period, then with 



the same probability w we will reach a third bout.  Such a model has no history.  
Reaching some arbitrary round n does not in any way impact the probability of reaching 
round n + 1.  It is sort of like radio active decay.  This type of model seems implausible 
and it is.  In many models of cooperation, this type of rule is used.  We could make things 
even simpler by assuming a fixed period of N rounds.  If we do this, however, we must be 
careful not to introduce strategies which play contingently based on what round in the 
sequence they are in.  Then, we would expect a strategy to always defect on the last 
round as there are no consequences.  Strategies will anticipate this defection and also 
defect on the second to last round.  The process of “backwards induction” goes on until 
we end up with no cooperation.  That is an interesting problem which has vexed 
economists for a long time.  However, that is not what we are interested here.  As such, 
we will not consider strategies which know what round there in or how many rounds 
there are.  All that said, we could have modeled things with a fixed number of rounds.  
For reasons of convention we did not and so we’re stuck with the radio active decay 
version of time. 
 
Okay, so we always play one round and advance to a subsequent round with probability 
w.  With this fact, we can show that the probability of reaching round n is given by wn-1.  
To see this, we note that probability of reaching round 1 is given by w0 which is 1.  The 
probability of reaching the second period is given by w1 which is w.  Likewise, the 
probability of reaching the third round is given by the product of three terms: (1) the 
probability of reaching the first round, (2) the probability of reaching the second round 
conditioned on reaching the first round, and (3) the probability of reaching the third 
round conditioned on reaching the second round.  Remember that the probability of 
reaching any particular round conditioned on reaching the previous round is simply w.  
As such, the probability of reaching round 3 becomes 0 2* *w w w w= .  Generally, the 
probability of reaching round n is given by wn-1.  If we assume that w=0.9, then the 
probability of reaching round 6 is given by w5, which is 0.59.   
 
So, how many rounds will there be?  If we set N equal to the number of rounds, then we 
have that N = 1 + w1 + w2 + w3 + w4 + w5 + …  The series goes on forever.  However, 
there is an interesting thing about such a series.  It rapidly reaches equilibrium.  We’ll 
first look at this graphically.  
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Along the y-axis we have the probability of reaching a particular round and along the x-
axis we have the number of rounds.  I have set w = 0.9.  So, the probability of reaching 
round 20 is given by 13.5%. 
 
As you notice, the probability quickly decays to zero.  This seems counter intuitive 
because we said that the conditional probability of reaching any particular round, 
assuming we have reached the previous period, is fixed at w.  A similarly counter-
intuitive problem was laid out by the Greek philosopher Xeno in his famous paradox of 
the tortoise and the hare. 
 
What concerns us is that while the conditional probability of reaching the next round is 
fixed at w, the probability of reaching any particular round is not fixed; it is given by wn-1.  
As n gets large, the probability rapidly approaches 0.  We can see that in the graph above. 
 
Okay, armed with this new knowledge, we can ask our question again: how many rounds 
will there be?  We can’t answer the question with certainty because reaching each round 
is a probability not certainty.  However, we can calculate the expected, or average, 
number of rounds.  Let’s first look at this graphically. 
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Along the y-axis we have the expected number of periods.  Along the x-axis, we have the 
contribution that each additional round makes to that expected number (i.e., wn-1).  Again, 
w is set to 0.9.  As you can see, for the first few rounds, there is a relatively high 
probability of reaching the next round and so there is a significant contribution of that 
marginal round to the expected total.  As the probability of reaching a round far off in the 
future approaches 0, it makes a small contribution to the expected total. 
 
In our case, the expected number of rounds, when w = 0.9, is 10.  Now, let’s see if we can 
derive this number using w.  Let us declare N as the expected number of periods.  We 
then have 
  

...1 5432 wwwwwN +++++=     (1) 
 
which is shown in the graph above.  Let us subtract 1 from both sides of (1). 
 

...1 5432 +++++=− wwwwwN     (2) 
 
Now, we can factor out a w from the right-hand side of (2). 
 

...)1(1 432 +++++=− wwwwwN     (3) 
 
Notice that the sum inside of the parentheses on the right-hand side of (3) is just the same 
as the right-hand side of (1).  Thus, we can substitute N for the sum inside the parentheses 
of (3). 
 

wNN =−1       (4) 
 
Now we solve (4) in terms of N. 
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We have derived the expected number of periods in (5).  From our previous example, 
where we set w=0.9.  If we plug that value into (5), then we get back 10. 
 
After that long digression, we can return to our model of indirect reciprocity.  Our 
indirect reciprocity game lasts for the expected number of periods given in (5).  We now 
want to derive the fitness function for each strategy in our model.  In the paper, we 
consider several strategies.  Before getting into specifics, let us see how we can derive a 
general fitness function for our model.  To do this, we simply have to add up the payoff 
that an individual playing a particular strategy will, on average, receive in each period 
summed over all periods.  How do we do that?  Note that we can utilize something like 
the trick we used to derive the expected sum in (5) to derive our total fitness. 
 
Let us start with Nowak and Sigmund’s model from the 1998 JTB paper.  They have 
three strategies.  We’ll call them ALLC, ALLD, and DISC.  We’ll denote the frequency of 
each of these strategies with x1, x2, and x3, respectively.  Let us denote the payoff of 
strategy i in round n with Vn(i).1  Further, let us denote the fraction of type i in good 
standing in round n with gn(i). 
 
Okay, let’s us start with round 1.  As no social behavior has yet taken place, we assume 
that everyone is in good standing.  Thus, we have, 
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Using the definition of the strategies from Nowak and Sigmund’s paper, we have the 
following payoffs in round 1 
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This is so, because the ALLC and DISC will always cooperate, while the ALLD will not.  
After this first period, we need to update the fraction of good standing for each type.  
Notice that all the ALLC and DISC individuals will be in good standing, because they 
cooperated in period 1, while all the ALLD individuals are bad because they did not 
cooperate.  Entering period 2, we have  
 

                                                 
1 I have changed things slightly from the paper that I published.  I’ll use V to capture the payoff in any 
particular round.  I’ll sum them up to derive the total fitness and use W for this sum. 
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Okay, in period 2, the ALLC types will cooperate with everyone, the ALLD will cooperate 
with no one and DISC will cooperate only with good-standing players, which are the 
ALLC and the DISC types in the population.  Thus, we have round 2 payoffs  
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The ALLC types get help from other ALLCs and from DISCs and they help everyone.  
The ALLD types only get help from the ALLCs, the DISCs will never again offer help to 
them.  The DISC types will get help from the ALLCs and from other DISCs.  They will 
only offer help to ALLCs and other DISCs, as those are the only types in good standing.  
Okay, using the image-scoring rules of Nowak and Sigmund’s model, any cooperation 
brings a positive image score and a defection brings a negative one.  Based on these rules 
and their behavior in period 2, we enter round 3 with 
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Notice that the fraction of the DISC type in good standing at the start of period 3 is a 
function of who they interacted with in period 2.  In this case, the DISC individuals will 
maintain their positive image score unless they interacted with an ALLD individual.  If 
they did, they would have defected on the bad-standing ALLD and thus themselves fallen 
into bad standing.   
 
To proceed, let us introduce one more variable.  Let gn denote the fraction of the whole 
population with a positive image score in period n.  We note that ALLC will always have 
a positive image score as they always cooperate (remember that in the Nowak and 
Sigmund model, there are no errors).  The ALLD individuals never cooperate and so will 
never have a positive image score.  The DISC individuals will cooperate when they meet 
someone with a positive image score and defect on those with a negative image score.  
Thus, the fraction of DISC with a positive image score in any particular round is strictly a 
function of whether or not they meet good or bad people in the previous period.  Thus, in 
round n (where n > 1) we have 
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From (11) we can calculate what the fraction of the whole population with a positive 
image score in any particular round. 
 

 311 xgxg nn −+=      (12) 
 
Notice that (12) is the same as (1) from Nowak and Sigmund’s 1998 JTB paper.  Okay, 
before proceeding, let us derive the fitness for ALLC and ALLD.  After the first round, we 
have  
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The payoffs in (13) are constant after the first round, so we can calculate the fitness of 
ALLC and ALLD by summing up their payoffs in every round.  Using the derivation (5) 
for the expected number of periods, we have  
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From (14), we see that ALLC will get help from other ALLCs and the DISCs in every 
period and help everyone in every period.  The ALLDs get help from ALLCs in all rounds 
and only get help from the DISCs in the first period. 
 
Now, let us return to the calculation of the fitness for the DISC types.  After the first 
round, the payoff to DISC is given by 
 

nnn cgDISCgxxbDISCV −+= ))(()( 31    (15) 
 
From (15), we see that an individual discriminator always gets help from the ALLCs.  He 
will get help from the other DISCs when he has a positive image score, which is given by 
gn(DISC).  This discriminator will offer help only when he meets someone with a 
positive image score, which is given by gn.  Using (11), we can substitute gn-1 for 
gn(DISC) and thus rewrite (15) as  
 

nnn cggxxbDISCV −+= − )()( 131      (16) 
 
Now, using (12), we can substitute gn for x1 + x3gn-1 and rewrite (16) as  
 

  nn gcbDISCV )()( −=      (17) 
 
To derive the fitness of DISC we need to sum up the payoffs in all rounds.  We now have 
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Before I proceed, let me explain why I put the –bx2 term at the end.  After the first round, 
the term gn captures the ALLCs and the DISCs who have a positive image score.  Thus the 
term gn accurately reflects the fraction of good people in the population in a round.  In the 
first round, however, we assumed that g1=1.  That is, we assume that, in the absence of 
information, everyone is good.  However, we know that the ALLD types will not 
cooperate in any round by definition.  Without making any adjustment, we would have 
the first-round payoff to DISC to be 11 )()( gcbDISCV −= .  As we have defined g1=1, we 
would have cbDISCV −=)(1 .  This is not accurate, however.  The DISC will always 
cooperate (paying the cost –c), but they will only receive help from the ALLC and DISC 
types.  Thus, we could write cxxbDISCV −+= )()( 311 .  Remember, however, that adding 
and subtracting the same number does nothing to a sum.  Thus, we can write 

cbxbxxxbDISCV −−++= 22311 )()( .  This can be rewritten as 
cbxxxxbDISCV −−++= 23211 )()( , which can then be rewritten as 

cbxbDISCV −−= 21 )1()(  as we know that 1321 =++ xxx .  Okay, now knowing that 
g1=1, we can write 1211 )( cgbxbgDISCV −−= .  This can be rewritten as 

211 )()( bxgcbDISCV −−= .  When we include this expression in the sum of (18), I just 
left the term –bx2 at the end. 
 
Sorry for that digression.  To proceed, let us define a new variable G (don’t try to hard to 
think about what G ‘means’, it will just make the make easier) 
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Notice that (19) looks a little like our expression for the expected number of rounds in 
(1).  Okay, using factoring a w from (19) we have 
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Using (12), we can rewrite (20) as  
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Factoring this in terms of x1 and x3, we have  
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Alright, now we’re getting somewhere.  Notice that the sum multiplied by x1 in (22) is the 
series from (1).  Thus, we can substitute (5) for it.  Also, notice that the sum multiplied by 



x3 in (22) is the same as (19).  Thus, we can substitute G for it.  We can now rewrite (22) 
as 
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Remember that g1=1.  Also, let us multiply the expression by (1-w).  We now have 
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Now, with a little algebra, we can solve (24) in terms of G.  First, let rewrite (24) as  
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Let us now bring all the G terms to one side. 
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Now we have that  
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Let us rewrite (27) as  
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Substituting (27) into (18), we can derive the fitness function for DISC. 
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Okay, we have derived the fitness function of DISC from the Nowak and Sigmund model 
of indirect reciprocity from their 1998 JTB paper.  It is written slightly differently from 
the way that Nowak and Sigmund write, but I think it is more clear. 
 
Okay, now let us move on to the derivations that were new in our paper.  We will derive 
the fitness function of the RDISC strategy taken from appendix B1.  Unfortunately, when 
reputations are modeled as standings as opposed to image-scores, the math becomes 
much more complicated.  As such, a few ‘tricks’ must be employed.  There isn’t any 
funny business going on.  The tricks serve to make good approximations while making 



the equations solvable.  Whenever using simplifying tricks, you should always check the 
results against the true results to make sure that nothing has been lost in the simplification 
process.  A spreadsheet like Excel is a good place to perform such a check. 
 
We will do a simplified version of the model presented in the paper which will make 
things a little more clear.  We will assume that information is complete (i.e., everyone 
knows exactly what everyone else did in the previous round).  You can follow along with 
the math presented in the paper’s appendix if you set q = 1. 
 
In this model we have three strategies, ALLC, ALLD, and RDISC.  Let us denote the 
frequencies of these strategies by x1, x2, and x4, respectively.  As in the Nowak and 
Sigmund model, we have one round with certain probability.  A following round occurs 
with probability w.  Thus, condition (5) will yield the expected number of rounds.  As in 
the previous model, the payoff to a strategy in each round will be based on the 
distribution of types and the probability with which an individual finds himself and his 
partner in good standing.  Remember, that in the Nowak and Sigmund model, they used 
image-scoring where good people are those that cooperate and bad people are those that 
defect.  In a standing model, people are bad when they defect on a good-standing partner.  
Any cooperation brings with it good standing.  A defection on a bad-standing partner will 
leave an individual’s standing unchanged.  Okay, let us first assume that everyone starts 
out in good standing.  Thus we have  
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Afterwards, in round n (where n > 1) we have the following recursions.  I’ll go through 
the logic of each strategy one by one.  First, for ALLC, we have  
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This says that the probability an individual ALLC will be in good standing in round n is 
the sum of two components.  First, if he was in good standing in the previous round 
( )(1 ALLCgn− ), he retains this good standing unless he commits an error against a partner 
who is in good standing ( α11 −− ng ).  Second, if he was in bad standing at the end of the 
previous round ( )(1 1 ALLCgn−− ), he can regain it by cooperation, which he always 
intends to do.  He fails with error sometimes though ( α−1 ). 
 
The ALLD will never cooperate and so loses its standing and never regains it.  Thus, we 
have,    
 

0)( =ALLDgn      (31) 
 
For the RDISC types, we have the following recursion 
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Again, this is made up two components.  If the RDISC was in good standing, he keeps it 
unless he commits an error against a good-standing partner.  If the RDISC was in bad 
standing, he regains it if he cooperates.  He only tries to cooperate when he meets a good-
standing partner and this must be scaled by the error rate.  (Note, that the CTFT strategy 
that we analyze in appendix B2 and the one that Leimar and Hammerstein (2001) 
analyze, is slightly different.  When it is in bad standing, it will always try and cooperate, 
regardless of the standing of its partner.) 
 
Let us also use the expression gn to express the fraction of the population in good 
standing in round n. 
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Okay, let us know write down the payoffs to each strategy in the first round. 
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Afterwards, in round n (where n > 1), we have  
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To calculate the fitness function for each strategy, we could proceed as did Nowak and 
Sigmund, which would look something like 
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We can put in the expressions for the payoffs and try to proceed by calculating something 
like the G expression that we did in the Nowak and Sigmund model.  However, the 
recursions in (30) and (32) are complex compared to the ones from the previous model.  
Unfortunately, there is no neat way to derive a summation like we did in (28).  This 
means, that we cannot derive accurate expressions for the fitness of each strategy.  
However, we can note that the recursions in (30) and (32) reach equilibrium and they do 
it really quickly.  Let me show you this with a graph.  I have set x1=0.35, x4=0.35, and 
α=0.05.   
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See that after 2 or 3 rounds, gn(ALLC) and gn(RDISC) have reached their equilibrium.  If 
we assume that they reach equilibrium in round 2, instantly, we lose almost nothing.  A 
spreadsheet check should confirm this.  Before proceeding, let me use the variable 
G(ALLC) and G(RDISC) to denote the fraction of ALLC and RDISC, respectively, in 
good standing at equilibrium.  Also, let G be the fraction of the population in good 
standing at equilibrium.  I’m sorry I’m reusing G.  It means something completely 
different that the G from the Nowak and Sigmund model presented above.  If we assume 
that equilibrium is reached instantaneously in round 2, we can rewrite (35) as  
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This is the same for all rounds after round 1.  So, let us know calculate the fitness 
function for each strategy.  I’ll do them one by one.  First, starting with ALLC 
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If we substitute in (34) and (37), we have 
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We can factor out a (1- α) and rewrite (39) as  
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Next, let us group up the terms inside of the brackets  
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Now we can substitute result (5) into (41) and get 
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ALLCW

1
1

...)()()(1
1

1

)1()( 32
4

1

α  (42) 

 
To handle the term in the middle, let us factor out the term G(ALLC). 
 

( )( )























−
−

+++++
−

−=

w
c

wwwALLCGbx
w

bx

ALLCW

1
1

...)(1
1

1

)1()( 32
4

1

α    (43) 

 
Let us now factor out a w from the sum to get 
 

( )( )























−
−

+++++
−

−=

w
c

wwALLCwGbx
w

bx

ALLCW

1
1

...1)(1
1

1

)1()( 2
4

1

α    (44) 

 
We can now substitute in (5) to get 
 
 

























−
−









−
++

−

−=

w
c

w
ALLCwGbx

w
bx

ALLCW

1
1

1
1)(1

1
1

)1()( 4

1

α    (45) 



 
Let me rewrite (45) as  
 

























−
−









−
+

−
−

+

−

−=

w
c

w
ALLCwG

w
wbx

w
bx

ALLCW

1
1

1
1)(

1
1

1
1

)1()( 4

1

α   (46) 

 

All that I have done is substitute 
w
w

−
−

1
1  for a 1.  Now, I will factor out a 

w−1
1  to get 

 

( )[ ]cALLCwGwbxbx
w

ALLCW −+−+
−

−= )(1
1

1)1()( 41α   (47) 

 
Let us next calculate the fitness of ALLD.  Using (34), (35) and (36), we have 
 

...)1()1()()1()( 1
2

141 +−+−++−= bxwbxwxxbALLDW ααα   (48) 
 
Factoring out a (1- α), we have 
 

[ ]...)()1()( 1
3

1
2

141 bxwbxwwbxxxbALLDW ++++−= α    (49) 
 
We can rewrite (49) as  
 

[ ]...)1()( 1
3

1
2

141 bxwbxwwbxxbxALLDW ++++−= α    (50) 
 
Let us group terms, so we have 
 

[ ]4
32

1 ...)1()1()( bxwwwbxALLDW +++++−= α    (51) 
 
Substituting in (5), we have the fitness function of ALLD 
 





 +

−
−= 41 1

1)1()( bx
w

bxALLDW α      (52) 

Next, we need to calculate the fitness function of RDISC.  Let us use (34), (35) and (36) 
to have 
 

[ ] [ ]
[ ] [ ] ...))(()1())(()1(

))(()1()()1()(

41
3

41
2

4141

+−+−+−+−+

−+−+−+−=

cGRDISCGxxbwcGRDISCGxxbw
cGRDISCGxxbwcxxbRDISCW

αα

αα
 (53) 

 



First, let us factor out the error term 
 

[ ] [ ]
[ ]
[ ] 
















+−++

−++

−++−+

−=

...))((
))((

))(()(

)1()(

41
3

41
2

4141

cGRDISCGxxbw
cGRDISCGxxbw

cGRDISCGxxbwcxxb

RDISCW α   (54) 

 
We group up terms to get 
 
 

( )
( )

( ) 















+++++−

+++++

++++

−=

...1

...)()()(1

...1

)1()(
432

32
4

32
1

GwGwGwwGc

RDISCGwRDISCGwRDISCwGbx

wwwbx

RDISCW α  (55) 

 
We can substitute in (5) to get 
 

( )
( )























+++++−

+++++
−

−=

...1

...)()()(1
1

1

)1()(
432

32
4

1

GwGwGwwGc

RDISCGwRDISCGwRDISCwGbx
w

bx

RDISCW α  (56) 

 
We next factor the middle and last sum to get 
 

( )( )
( )( )























+++++−

++++++
−

−=

...11

...1)(1
1

1

)1()(
32

32
4

1

wwwwGc

wwwRDISCwGbx
w

bx

RDISCW α   (57) 

 
Again, substituting in (5) we have 
 

































−
+−









−
++

−

−=

w
wGc

w
RDISCwGbx

w
bx

RDISCW

1
11

1
1)(1

1
1

)1()( 4

1

α    (58) 

 



Substituting in a 
w
w

−
−

1
1  for a 1, we now have 

 
 

































−
+

−
−

−









−
+

−
−

+

−

−=

w
wG

w
wc

w
RDISCwG

w
wbx

w
bx

RDISCW

1
1

1
1

1
1)(

1
1

1
1

)1()( 4

1

α    (59) 

 

Factoring out a 
w−1

1 , we have 

 

( ) ( )[ ]wGwcRDISCwGwbxbx
w

RDISCW +−−+−+
−

−= 1)(1
1

1)1()( 41α   (60) 

 
We now have the fitness function for each strategy.  Let me just rewrite (47), (52), and 
(60). 
 

( )[ ]

( ) ( )[ ]wGwcRDISCwGwbxbx
w

RDISCW

bx
w

bxALLDW

cALLCwGwbxbx
w

ALLCW

+−−+−+
−

−=





 +

−
−=

−+−+
−

−=

1)(1
1

1)1()(

1
1)1()(

)(1
1

1)1()(

41

41

41

α

α

α

(61) 

 
To complete these fitness functions, we must figure out what G(ALLC), G(RDISC) and G 
are.  Remember that I said that the recursions (30) and (32) reach equilibrium.  Let’s 
calculate that equilibrium.  First we’ll start with RDISC.  Rewriting (32) 
 

[ ] )1())(1(1)()( 1111 αα −−+−= −−−− nnnnn gRDISCggRDISCgRDISCg  (62) 
 
At equilibrium, we can substitute in G(RDISC) and G to get 
 

[ ] )1())(1(1)()( αα −−+−= GRDISCGGRDISCGRDISCG   (63) 
 
Expanding (63) we have 
 

)1()()1()()()( ααα −−−+−= GRDISCGGGRDISCGRDISCGRDISCG     (64) 
 
The two G(RDISC) terms cancel each other out so we have 



 
)1())()1()(0 ααα −−−+−= GRDISCGGGRDISCG   (65) 

 
Next, we can divide through by G 
 

)1)((1)(0 ααα −−−+−= RDISCGRDISCG    (66) 
 
Expanding the last term, we have 
 

ααα )()(1)(0 RDISCGRDISCGRDISCG +−−+−=   (67) 
 
The first and last terms cancel each other out, so we have 
 

)(10 RDISCG−−= α     (68) 
 
Thus, we have 
 

α−=1)(RDISCG      (69) 
 
Next, we’ll move onto ALLC.  We have (30) 
 

[ ] )1))((1(1)()( 111 αα −−+−= −−− ALLCggALLCgALLCg nnnn   (70) 
 
Substituting in G(ALLC) and G, we have 
 

[ ] )1))((1(1)()( αα −−+−= ALLCGGALLCGALLCG   (71) 
 
Expanding this, we have 
 

ααα )()(1)()()( ALLCGALLCGGALLCGALLCGALLCG +−−+−=  (72) 
 
The two G(ALLC) terms cancel out, leaving us with 
 

ααα )()(1)(0 ALLCGALLCGGALLCG +−−+−=   (73) 
 
Now, we have to use (33) to put in something for G.  We now have 
 

[ ] ααα )()(1)()()(0 41 ALLCGALLCGRDISCGxALLCGxALLCG +−−++−=   (74) 
 
Substituting (69), we have 
 

[ ] αααα )()(1)1()()(0 41 ALLCGALLCGxALLCGxALLCG +−−+−+−=  (75) 
 
Expanding, we have 



 
( ) ααααα )()(1)1)(()(0 4

2
1 ALLCGALLCGALLCGxALLCGx +−−+−−−=  (76) 

 
As this expression is getting complicated, I need to employ a few more tricks.  First, let 
me expand (76) one more time  
 

( )
αα

ααα
)()(1

)()()(0 2
44

2
1

ALLCGALLCG
ALLCGxALLCGxALLCGx

+−−+
+−−=   (77) 

 
If we assume that errors rates (i.e., α) are low, then terms like α2 will be really small.  For 
example, if α = 0.05, then α2 = 0.0025.  Not much will be lost from the calculations if we 
assume that 02 ≈α .  We can thus drop one term from (77) and have 
 

( ) αααα )()(1)()(0 4
2

1 ALLCGALLCGALLCGxALLCGx +−−+−−=   (78) 
 
Next, if we assume that G(ALLC) is close to 1 (an excel check will prove this to be true), 
we can make one more simplification.  It should not be surprising that G(ALLC) is close 
to 1 because ALLC always tries to cooperate and so at equilibrium, most ALLC should 
be in good standing.  If we assume that G(ALLC) is close to 1, then we can make the 
following estimation 
 

( ) 1)(2)( 2 −≈ ALLCGALLCG     (79) 
 
This estimation is taking advantage of the fact that near the value of 1, you can make a 
linear approximation of a quadratic function with (79).  You should convince yourself of 
this approximation using values of G(ALLC) near 1 to verify (79).  Now, substituting 
(79) into (78), we have 
 

( ) αααα )()(1)(1)(20 41 ALLCGALLCGALLCGxALLCGx +−−+−−−=   (80) 
 
Expanding (80), we have 
 

ααααα )()(1)()(20 411 ALLCGALLCGALLCGxxALLCGx +−−+−+−=  (81) 
 
Let us break up the first term into two pieces, so we have 
 

αα
αααα

)()(1
)()()(0 4111

ALLCGALLCG
ALLCGxxALLCGxALLCGx

+−−+
−+−−=

  (82) 

 
Now we can group terms to get  
 

αααααα 1141 1)1)((0 xxxxALLCG +−+−−−+−=   (83) 
 



If we factor terms, we get 
 

)1(1))1(1)((0 1141 xxxxALLCG −−+−−−−−= αα   (84) 
 
We can move the first term to the left to get 
 

)1(1))1(1)(( 1141 xxxxALLCG −−=−−−− αα    (85) 
 
Next, we get 
 

)1(1
)1(1)(

141

1

xxx
xALLCG
−−−−

−−
=

α
α     (86) 

 
Let’s rewrite this as 
 

)1(1
1)1(1)(

141
1 xxx

xALLCG
−−−−

−−=
α

α    (87) 

 
Okay, here’s another trick.  Let’s us introduce δ as an arbitrary variable.  The following 
approximation will be good so long as δ is small.    
 

δ
δ

+≈
−

1
1

1       (88) 

 
If we use the trick in (88), we can rewrite (87) as 
 

( )( ))1(1)1(1)( 1411 xxxxALLCG −−−+−−= αα   (89) 
 
As we have three strategies which add up to 1, we can say that x2=1-x1-x4.  We can thus 
rewrite (89) as 
 

( )( ))(1)1(1)( 121 xxxALLCG −+−−= αα     (90) 
 
We now expand (90) to get 
 

))(1()()1(1)( 121
2

121 xxxxxxALLCG −−−−+−−= ααα   (91) 
 
Remember that we can assume that α2 = 0.  We thus have 
 

)()1(1)( 121 xxxALLCG −+−−= αα      (92)  
 
Let us expand (92) to get 
 

1211)( xxxALLCG αααα −++−=     (93) 



 
Canceling terms, we get 
 

21)( xALLCG αα +−=     (94) 
 
Which can be factored to get  
 

)1(1)( 2xALLCG −−= α     (95) 
 
We can substitute (95) and (69) into (61) to then derive the fitness functions of the three 
strategies.  I’ll leave that to you, I’m tired! 
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