
Supplementary Equations  
 
1a. Evolutionary dynamics of Shunner, Cooperator and Defector with random group 
formation 
 
We begin by writing down the payoff for each strategy, Cooperator (C), Defector (D) 
and Shunner (S), for a given group composition.  This payoff is a sum of the payoff 
during the collective action stage and the payoff during the mutual aid stage.  Before 
proceeding, we note that an individual’s standing entering a particular period of the 
mutual aid game will influence his or her payoff in that period.  It can be shown that the 
frequency of individuals in good standing for each strategy rapidly approaches an 
equilibrium value.  Thus, we can approximate the expected payoff during the mutual aid 
game for a particular strategy by adding the payoff in the first period of the mutual aid 
game to the payoff in round n, by which time the frequency of individuals in good 

standing for that strategy has reached equilibrium, weighted by the term 
w

w
−1

, which 

represents all subsequent periods.  Numerical simulation suggests that such an 
approximation has little effect on the model results.1   
 
Returning to the payoff computations, we denote the numbers of individuals using 
strategies C, D and S amongst the 1−n  other group members by 1x , 2x  and 3x , 
respectively.  We denote the equilibrium proportion of individuals of strategy i in good 
standing and payoff to an individual playing strategy i with G(i) and V(i), respectively. 
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We next derive the equilibrium fractions of C and S in good standing during the mutual 
aid stage for a given group composition.  As the strategy D fails to donate during the 
                                                 
1 For further discussion, see Panchanathan and Boyd (2003), whose indirect reciprocity game has similar 
dynamics to the mutual aid game modeled in this paper. 



collective action stage, it immediately falls into bad standing and never recovers.  We 
denote the fraction of strategy i in good standing during round n by )(ign .  The term ng  
denotes the total fraction of a social group in good standing during round n.  
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To derive G(C) and G(S), we assume that e is small such that 2 0e ≈ .  Further, as 
simulation results indicate that ( ) 1G C ≈ , we can assume that 1)(2)( 2 −≈ CGCG .  At 

equilibrium, we have 1 3( ) 1
1

x x
G C e

n
+ → −  − 

 and ( ) 1G S e→ − . 

 
The expected fitness of a strategy is the payoff off that strategy in a given group averaged 
over all possible group compositions.  If we let p, q and qp −−1  denote the frequencies 
of S, C and D, respectively, in the global population, then, from the properties of the 
multinomial distribution, the expected values of 1x , 2x  and 3x  are )1( −nq , 

)1)(1( −−− nqp  and )1( −np , respectively.  Substituting these expectations, we find the 
expected fitness for each type is 
 

[ ]

[ ]

0

0

0

1 1
( ) ( ) ( (1 ( )))

1
1 1

( ) ( )
1

1 1
( ) ( ) ( (1 )) ( (1 ( )) (1 ))

1

e n
W C W B q p C b q p we p q c

w n
e n

W D W B q p bq
w n

e n
W S W B q p C b q p we c q we p q p we

w n

− −
= + + − + + − + −

−
− −

= + + +
−

− −
= + + − + + − − − + + −

−

 

   
where W0 represents baseline fitness.  When Shunner is common, the fitness of all three 
strategies will be dominated by groups in which the other n – 1 individuals are Shunner.  
Thus, to determine when Shunner can resist invasion by rare Defectors, we set 0=q  and 

1≈p .  We then find that )()( DWSW >  when  
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This conditions tells us that Shunner is evolutionarily stable against Defector when the 
long run benefits of reciprocity through mutual aid (the expression on the left of the 
inequality) is greater than the short-term benefit of free riding the collective action (the 
expression on the right). 
 



Next, to find the stability criteria for Shunner against Cooperator, we begin by setting 
01 =−− qp  and 1≈p .  We then find the condition under which )()( CWSW >  to be  

  
 0cwe >   
 
This tells us that so long mutual aid (1) is costly, (2) persists for more than one period, 
and (3) is prone to error, then Shunner is an ESS against Cooperator.   
 
 
1b. Invasion analysis of Shunner against Defector assuming non-random group 
formation 
 
Setting the frequency of Cooperator (q) to zero, we model this condition by assuming that 
the conditional probability of a type j donor matched with a type i recipient during the 
mutual aid game, )|Pr( ji , is:  
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The parameter r is the coefficient of relatedness in a haploid sexual genetic model and, 
more generally, measures the degree of assortment.  It then follows that the expected 
number of type j individuals amongst the other 1−n  group members in a group 
containing one individual of type i, which we denote by )|( ix jε , is:  
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Substituting these expectations we have the following fitness functions: 
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As Shunner and Defector are evolutionarily stable against invasion by each other, we can 
find the unstable equilibrium by setting the two fitness functions equal to each other.  The 
expression for the unstable equilibrium, plotted in Figure 3a of the text, is given by 
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To determine threshold amount of assortment (r*) necessary for Shunner to invade 
against Defector, we set 0≈p  and find the conditions under which )()( DWSW > , 
solving for r. ,  
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This critical threshold of relatedness is plotted in Figure 2a of the text. 
 
To get a better sense of what this expression means, we can simplify by assuming that (1) 
there are no errors to mutual aid contribution (i.e., 0=e ) and (2) groups are large (i.e., 

1
1

≈
−
n

n
).  These assumptions do not alter the results qualitatively.  We now have 
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This expression can be rewritten as  
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This condition bears striking similarity to the condition for the invasion of Tit-for-tat 
against Defector in the model of reciprocal altruism studied by Axelrod and Hamilton 
(1981).  This is not surprising as the mutual aid game we study here, Axelrod and 
Hamilton’s model of reciprocal altruism, and models of indirect reciprocity (Nowak and 
Sigmund 1998; Panchanathan and Boyd 2003) are all systems of reciprocity and thus 
have similar dynamical properties.  Thus, as with other models of reciprocity, relatedness 
and reciprocity operate synergistically, such that an increase in w results in a lowered 
requisite value of r* for the evolution of cooperation.  Conversely, an increase in 
assortment (r*) leads to a decrease in the requisite number of reciprocity bouts (w).  This 
relationship can be shown by taking the derivative of r* with respect to w.  When we do 
this, we find that  
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2. Evolutionary dynamics of Shunner and Reciprocator with non-random group 
formation 
 
In this model, we consider two strategies: Shunner (S) and Reciprocator (R).  In this 
model, R types do not contribute to the collective action and do not attend to whether 
others do while S types contribute and attend to others’ contributions.  We keep track of 
the number of S and R amongst the 1−n  other group members with 3x  and 4x , 
respectively.  And we keep track of the global frequency S and R with p and p−1 , 
respectively.  Using the binomial theorem and the previously-defined assortment 
parameter (r), we have: 
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and 
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To determine the equilibrium fraction of individuals in good standing for each type, we 
note that while both S and R attend to standing, they each have different rules for its 
assignment.  As such, we let )|( jign  be the fraction of type i in good standing in round n 
as seen by type j.  As Reciprocator does not participate in the collective action, 

0)|( =SRgn  for all rounds after stage one, leaving us with the following recursions: 
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At equilibrium, we have 
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Using a similar method outlined for model one, we derive expected fitness functions for 
each strategy. 
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By setting these fitness functions equal to each other, we can find any internal 
equilibrium points.  The result is a quadratic function given by 
 

{ } { }[ ]

{ }[ ] 0)1)(1()1()32()21(
1

1
1

)1)(21(1)1)(21(21)1(
1

1
1

ˆ

))(21()1(
1

1
1

ˆ

2

22

=−−−−+−−−
−

−
−

+−+

−−+−−−+−
−

−
−

−

−−−
−

−
−

werceererbw
n

n
w
e

BrC

rewcrewbr
n

n
w
e

p

cberw
n

n
w
e

p

 

 
The negative root of this expression lies between [0, 1] and is an unstable equilibrium.  It 
is graphed in Figure 3b of the text. 
 
To determine the stability criteria for Reciprocator, we set 0≈p  and 0=r  and then 
solve for )()( SWRW > , which yields the condition 
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We next investigate the conditions under which Shunner can invade a population playing 
Reciprocator.  We set 0≈p  and find the conditions under which )()( RWSW > .  This 
results in a critical minimum threshold of relatedness (r*) for Shunner to invade against 
Reciprocator, which is given by 
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This critical threshold of relatedness is plotted in Figure 2b of the text. 
 
As we are interested in invasion conditions for which r* is small, we can assume that 

0*)( 2 ≈r .  We now have  
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As in the previous section, we set 0=e  and 1
1

≈
−
n

n
, which leaves us with the condition 
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From this inequality, it is not obvious how assortment (r*) and reciprocity (w) interact.  
Thus, we take the derivative of r* with respect to w, which yields 
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As the denominator is positive, we can write  
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It is not clear whether this expression is positive or negative.  Let us, therefore, 
momentarily assume that there is no cost to contributing to the collective action.  This 
seems a safe assumption as it represents the most conducive condition for the invasion of 
the Shunner strategy.  In a moment, we will relax this assumption.  By setting 0=C , we 
now have 
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As this expression is positive, we observe that relatedness and reciprocity operate 
antagonistically.  This result is in stark contrast to the one derived in section 1b and that 
of Axelrod and Hamilton’s model of reciprocal altruism.  If the Shunner type is to invade, 
it can only be driven by inclusive benefits from the collective action.  As the importance 
of reciprocity (w) increases, the requisite assortment level (r*) increases. 
 
How safe is it to analyze the relationship between assortment (r*) and reciprocity (w) 
when the collective action is costless ( 0=C )?  Above we found that   
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When this derivative is positive ( 0
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>
∂
∂

w
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), reciprocity and inclusive fitness operate 

antagonistically.  This derivative will be positive when the collective action benefit (B) is 
sufficiently high.  Precisely, 
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Under most model parameter values, 0
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∂
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 when CB 3>  (Figure 4). 

 
 
 

 
 
 
 
 

Figure 4. The minimum threshold of collective action benefit ( C
B ) necessary for Relatedness 

and reciprocity to operate antagonistically ( 0
*

>
∂
∂

w
r

) as a function collective action cost (C) and 

cost benefit ratio of mutual aid ( c
b ).  The cost of cooperating during one bout of mutual aid (c) is 

set to 1. 
 



Surprisingly, this says that when the collective action is sufficiently group beneficial 
( CB 3> ), increasing the strength of reciprocity (w) increases the requisite relatedness 
threshold for Shunners to invade against Reciprocity (r*).  Why would a less group 
beneficial collective action make it easier for Shunners to invade?  From Figure 4, we see 

that 0
*

<
∂
∂

w
r

, when CB < .  In Figure 5, we plot the threshold relatedness (r*) when 

CB = .  
                       (a) 

(b)  

 
 

Figure 5. The threshold degree of assortment ( r*) necessary for rare Shunners to invade a 

population in which Reciprocators are common as a function of the number of mutual aid periods 

(
w−1

1
) for different costs and benefits of collective action (B, C).  In (a), 2=b  and in (b), 

4=b .  In both (a) and (b), 1=c , 30=n  and 01.0=e . 



From this figure we see that the threshold relatedness does in fact decrease as the strength 

of reciprocity increases ( 0
*

<
∂
∂

w
r

).  This implies that relatedness and reciprocity operate 

synergistically (i.e., Axelrod and Hamilton’s “ratchet”).  Notice, however, that the 
threshold relatedness in Figure 5 approaches an asymptote which never falls below 0.5.  
If we are interested in a model of human social behavior, these regions of the parameter 
space are biologically uninteresting.  Thus, we can say that under relevant parameter 

values our assertion that 0
*

>
∂
∂

w
r

 seems to hold.  

 
 
3. Evolutionary dynamics of two types of Shunner with non-random group 
formation 
 
In this section, which was not presented in the text, we investigate how social norms 
change in our social model.  Thus, we have two strategies: Shunner Type 1 (S1) and 
Shunner Type 2 (S2).  S1 contributes to collective action 1 at a private net cost of 1C , 
which produces a benefit 1B  which is shared amongst the 1−n  other group members.  
This strategy assigns a lifetime of bad standing to those that do not contribute to this 
collective action.  S2 contributes to collective action 2 with associated costs and benefits 

2C  and 2B , respectively.  S2 assigns a lifetime of bad standing to those that do not 

contribute to this collective action.  We keep track of the number of S1 and S2 amongst 
the 1−n  other group members with xn −−1  and x , respectively.  And we keep track of 
the global frequency S1 and S2 with p−1  and p, respectively.  Using the binomial 
theorem and the previously-defined assortment parameter (r), we have: 
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As in the previous section, S1 and S2 both attend to standing but have different 
assignment rules.  As before, we let )|( jign  be the fraction of type i in good standing in 
round n as seen by type j.  As S1 and S2 do not contribute to the collective action which 



the other strategy expects, we have 0)2|1( =SSgn  and 0)1|2( =SSgn  for all rounds 
after stage one, leaving us with the following two recursions: 
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At equilibrium, we have 
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Using a similar method outlined for model one, we derive expected fitness functions for 
each strategy. 
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To determine the stability criteria for S1, we set 0≈p  and 0=r  and then solve for 

)2()1( SWSW > , which yields the condition 
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We next investigate the conditions under which S2 can invade a population playing S1.  
We set 0≈p  and find the condition under which ( 2) ( 1)W S W S> , which results in a 
critical minimum threshold of relatedness (r*) for S2 to invade against S1. 

 





 −−

−
−
−

+−>



 −−

−
−
−

+− )1)((
1

1
1

)1)((
1

1
1

* 1212 wecb
n

n
w
e

CCwecb
n

n
w
e

BBr  

 

As in the previous section, we set 0=e  and 1
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≈
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, which leaves us with the condition 
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From this inequality, it is not obvious how assortment and reciprocity interact.  Thus, we 
take the derivative of r* with respect to w, which yields 
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As the denominator is positive, we can write  
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This says that relatedness and reciprocity operate antagonistically when the new social 
norm increases mean fitness compared to the old social norms (i.e., 1122 CBCB −>− ).  
That is, under such conditions, the invasion of S2 is only determined by the inclusive 
benefits from the collective action.  As the effect of reciprocity increases (i.e., w 
increases), the requisite assortment (i.e., r*) increases.   
 
Note that above condition also implies that relatedness and reciprocity operate 
synergistically, which occurs when the new social norm decreases mean fitness (i.e., 

2211 CBCB −>− ).  Simulation results indicate, however, that this result is misleading; 
the synergy between assortment and reciprocity only occurs under conditions not 
otherwise conducive to the evolution of cooperation. 
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