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Introduction

Humans are unique in their capacity to acquire and transmit adaptive information
through both genetic and cultural channels (Boyd and Richerson, 2005). To
understand the dynamics of cultural evolution, we need to understand the nature
of our social psychology, cataloguing the various learning biases that underlie
cultural transmission. Henrich and Gil-White (2001) argue that a prestige-bias
(i.e., a preference for imitating prestigious individuals) would be a particularly
effective learning bias, as it increases the likelihood that naive individuals
acquire adaptive information. There are two parts to their argument. First,
selection would have co-opted pre-existing psychological adaptations designed
for ranking conspecifics, enabling imitators to rank models in terms of skill using
some measure of success as a proxy. Second, selection would have favored
imitators to confer deference on successful individuals in order to gain proximity,
enabling imitators to successfully imitate experts.

While there has been theoretical research on the effects of prestige on cultural
evolution (e.g., Boyd and Richerson, 1985) and even on the evolution of
prestige-seeking (Ihara, 2008), there have been no attempts to formalize and
thereby verify Henrich and Gil-White’s (2001) conjecture regarding the
evolution of a prestige-bias. In this paper, I present a formal model of the
evolution of prestige-biased transmission.

1



After presenting the modeling framework, I demonstrate the effectiveness of a
prestige-bias. When individuals imitate randomly-selected models, adaptation is
constrained by migration, the rate at which individuals can learn the adaptive
behavior on their own, and the difficulty in social learning the adaptive behavior
from others. When individuals imitate the prestigious, migration is the only force
opposing adaptation, which can result in a much higher frequency of the adaptive
behavior.

Next, following Henrich and Gil-White (2001), I study the evolution of the
prestige-biased learning bias in two steps. First, assuming that there is no
deference paid to the prestigious, when does natural selection favor selective
imitation (i.e., the degree to which individuals imitate experts as opposed
randomly-selected models)? Second, assuming individuals imitate experts, when
does natural selection favor deferential imitation (i.e., the degree to which
imitators pay a deference cost to experts in order to gain proximity and thereby
reduce social learning errors)?

Life History

When environments are stationary, adaptation can result from selection on genes.
When environments vary temporally or spatially, natural selection can favor
social learning, a form of phenotypic plasticity. Here, I use Wright’s ‘island
model’ to incorporate spatial variation, assuming that individuals live in an
infinite population, structured into infinitely-sized sub-populations. There is a
unique adaptive behavior for each sub-population. If an adult possesses the
adaptive behavior, he receives a marginal fitness benefit b. Adolescents first
imitate adults in their sub-population. If they don’t acquire the adaptive
behavior—and I assume that individuals know when they possess the adaptive
behavior—they attempt to learn the adaptive behavior on their own, succeeding
with probability I , representing the rate of innovation.

Two parameters determine the nature of social learning: the degree to which
individuals selectively imitate experts (s) and the degree to which they defer to
models in order to gain proximity (d). The selectivity parameter, s, affects the
number of models whose behavior is observed. When s = 0, imitators pick a
model at random from their natal group and attempt to imitate his behavior. If q
denotes the fraction of the population in possession of the locally-adaptive
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behavior, then these random imitators will imitate an expert with probability q.
When s = 1, imitators evaluate a set of n models. This set will contain at least
one expert with probability 1− (1− q)n. With probability (1− q)n, the set will
not include an expert, and so the selective imitator will attempt to innovate the
adaptive behavior. Selective imitation comes with a cost, denoted by cs,
representing the time and energy necessary to evaluate a set of models. The total
cost paid is the product of the cost, cs, and the reliance on selective imitation, s.
Following Henrich and Gil-White (2001), I assume that the psychological
machinery necessary to rank individuals by some measure of prestige already
exists, so cs should only be interpreted as search and evaluation costs. As such,
cs will likely be small relative to b.

The deference parameter, d, affects the accuracy of social learning. When d = 0,
imitators learn from a distance, successfully imitating the observed behavior with
probability 1− e. The parameter e represents the difficulty of imitation from a
distance. When d = 1, imitators pay a sufficient deference cost in order to gain
privileged access to models, thereby guaranteeing successful imitation.

Henrich and Gil-White (2001) argued that the dynamics of prestige and
deference would set up a market-like situation. Prestigious individuals will
attempt to extract as much deference as they can, while imitators will seek out
the lowest deference cost. To capture this market-like mechanism, I assume that
the cost of deference is given by D(1− q). D, which will be formally defined in
a subsequent section, represents the marginal benefit an imitator gains by
switching from learning at a distance to deferential imitation. This is the surplus
to be divvied up between the expert and the imitator. When the adaptive behavior
is rare (q ≈ 0), experts can extract nearly all of the surplus. When the adaptive
behavior is common (q ≈ 1), imitators won’t pay much to defer to experts. The
total deference cost paid is the product of the deference cost, D(1− q), and the
reliance on deferential imitation, d.

After social and individual learning, a fraction m of the individuals migrate to a
new group. Migration is assumed to be unrelated to the behavior being modeled,
driven by processes like marriage. Following Wright’s island model, the
distribution of immigrants are assumed to reflect the population-wide
distribution. Individuals who emigrate will not possess the adaptive behavior as
adults, as each group has a uniquely adaptive behavior. Individuals then
reproduce proportionate to fitness.
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Cultural Dynamics

When individual learning is coupled to a cultural inheritance system, a
population can adapt to its environment in a process analogous to natural
selection, a process Boyd and Richerson (1985) call ‘guided variation’. Even if
the rate of innovation is low, a population can be well-adapted to the environment
because adaptations are transmitted culturally. Biased learning rules can amplify
the effects of guided variation, increasing the rate of adaptation. If individuals
are biased towards imitating adaptive variants, then there are two forces which
increase adaptation, innovation and social learning.

To see how this works, let’s look at the cultural dynamics of different social
learning rules. Let q denote the frequency of the adaptive behavior among adults
and q′ the frequency among juveniles after social and individual learning in a
focal island population. Then, we have the following recursion:

q′ = (1−m)
[
Q + I(1−Q)

]
(1)

where Q is the probability of successfully acquiring the adaptive behavior
through social learning based on the distributions of social learning biases in the
population, and is a function of s and d. Following the assumed life history,
juveniles first attempt to socially learn the adaptive behavior. If unsuccessful,
they attempt to innovate. Only those individuals who remain in their natal group
(a fraction 1−m) can possess the adaptive behavior as adults. Q is given by:

Q(s, d) =
(1− s)(1− d)q(1− e) + (1− s)dq +
s(1− d)(1− (1− q)n)(1− e) + sd(1− (1− q)n)

(2)

In this model, migration opposes adaptation. When the migration rate is very
high, then most adults will be maladapted to their environments. However, when
migration rates are high, it’s unlikely that selection will favor cultural
transmission. Acquiring information through a cultural channel is only useful
when there is some correlation in the environments experienced across
generations. When individuals are unlikely to face the same selective pressures as
their parents, there is little reason to imitate parents. In this model, I assume that
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migration rates will be low (m� 1). With this assumption, some meaningful
fraction of the population will be in possession of the adaptive behavior (q � 0).

Equation (2) can now be usefully simplified with one further assumption. If
selective imitators cast a wide net in selecting a role model (n� 1), then
(1− q)n ≈ 0, implying they will almost certainly find an expert so long as one
exists in their group. With these two assumptions, equation (2) can be
approximated by:

Q(s, d) ≈ (1− s)(1− d)q(1− e) + (1− s)dq + s(1− d)(1− e) + sd (3)

Equation (3) lists the outcomes for different types of social learning. When there
is no reliance on selective or deferential imitation (s = 0, d = 0), an imitator
acquires the adaptive behavior with probability q(1− e). With no reliance on
selective imitation but full reliance on deferential imitation (s = 0, d = 1), an
imitator acquires the adaptive behavior with probability q. With complete
selective imitation but no deferential imitation (s = 1, d = 0), an imitator
acquires the adaptive behavior with probability 1− e. Finally, with full reliance
on selective and deferential imitation (s = 1, d = 1), an imitator will acquire the
adaptive behavior with certainty.

Assuming that the evolutionary dynamics of the two psychological biases
(represented by s and d) are slow compared to the cultural dynamics of
adaptation, we can set q′ = q to find the equilibrium frequency of the adaptive
behavior (q̂), resulting in:

q̂ ≈ (1−m)
I + s(1− I)

[
1− e(1− d)

]
1− (1−m)(1− I)(1− s)

[
1− e(1− d)

] (4)

INSERT FIGURE 1 HERE

Random Imitation

Let’s begin with the base case: neither selective nor deferential imitation. Setting
s = 0 and d = 0, equation (4) reduces to:
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q̂ = (1−m)
I

1− (1−m)(1− I)(1− e)
(5)

Equation (5) is plotted in figure 1. To gain further insight, we can assume that the
rates of migration, innovation, and the social learning error are low (m� 1,
I � 1, and e� 1), resulting in:

q̂ ≈ I

m + e + I
(6)

With random imitation (s = 0 and d = 0), cultural adaptation is constrained by
ratio of innovation (I) to migration (m) and social learning error (e) rates. When
the rate of innovation is much larger than the sum of migration and social
learning error rates (I � m + e), the population will be well adapted to the
environment (q ≈ 1). When innovation rates are much lower than the sum of
migration and social learning error rates (I � m + e), the population will be
poorly adapted to the environment (q ≈ 0). With purely guided variation, the rate
of adaptation is constrained by two factors, the migration rate and the difficulty
of social learning.

INSERT FIGURE 2 HERE

Selective Imitation

Next, let’s look at the effect of selective imitation without any deferential
imitation. Setting s = 1 and d = 0, equation (4) reduces to:

q̂ ≈ (1−m)
[
I + (1− I)(1− e)

]
(7)

Equation (7) is plotted in figure 2. Again, making the assumption that the rates of
migration, innovation, and the social learning error are low (m� 1, I � 1, and
e� 1), we can approximate equation (7) with:

q̂ ≈ 1−m− e (8)
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Adding selective imitation has lifted the constraint of innovation. With selective
imitation, the adaptation of the population is limited only by the rates of
migration and social learning error. Selective imitators expend sufficient time
and energy to evaluate a set of role models to increase the probability of
imitating from the successful. Thus, an innovation somewhere, however rare,
becomes an innovation everywhere, for all to share.

Deferential Imitation

We now turn to deferential imitation without any selective imitation. Setting
s = 0 and d = 1, equation (4) reduces to:

q̂ ≈ (1−m)
I

1− (1−m)(1− I)
(9)

Equation (9) is plotted in figure 2. Making the assumption that the rates of
migration, innovation, and the social learning error are low (m� 1, I � 1, and
e� 1), we can approximate equation (9) with:

q̂ ≈ I

m + I
(10)

With deferential imitation, the constraint of social learning error has been
eliminated. Now, the adaptation of the population is driven by the relative
magnitudes of migration and innovation. When innovation rates are much higher
than migration rates (I � m), the population is well adapted to its environment
(q ≈ 1). When migration rates are much larger than innovation rates, the
frequency of adaptation is low.

Selective Deferential Imitation

Finally, assuming completely selective, deferential imitation (s = 1 and d = 1),
equation (4) reduces to:

q̂ ≈ 1−m (11)
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Equation (11) is plotted in figure 2. When imitators are highly selective in
choosing role models and then pay a deference cost to gain access, thereby
eliminating errors associated with social learning, the only force mitigating
adaptation is migration. This is the core of Henrich and Gil-White’s (2001)
argument. A prestige-bias can vastly improve social learning.

Evolutionary Dynamics

That a prestige-bias amplifies guided variation, increasing adaptation at the
population level, is unsurprising. It is not, however, obvious whether natural
selection will favor such a bias. A prestige-bias doesn’t come for free. In this
model, imitators can pay two types of cost in order to increase the probability
they acquire adaptive information. They can pay a cost to increase the
probability that they imitate from a successful model, which I have called
selective imitation, and they can pay a deference cost to gain proximity to their
chosen model thereby decreasing social learning errors, which I have called
deferential imitation. These costs are borne by individuals, not populations. We
can now ask under what conditions natural selection favors the payment of these
costs in order to increase the success rate of social learning.

Letting w denote fitness, w0 the baseline fitness, Q the probability of socially
learning the adaptive behavior averaged across the different social learning
biases, and D the maximum deference cost, the fitness is given by:

w = w0 + b(1−m)
[
Q + I(1−Q)

]
− scs − dcd −Dd(1− q̂) (12)

In this model, adolescents first attempt to socially learn the adaptive behavior,
succeeding with probability Q, given by equation (3), substituting in equation (4)
for q. This assumes that the dynamics of culture are fast relative to the dynamics
of selection on the psychology underpinning social learning biases.

If an individual is unsuccessful in social learning, which happens with
probability 1−Q, he attempts to innovate, succeeding with probability I . If the
possessor of adaptive information doesn’t emigrate upon reaching adulthood,
which happens with probability 1−m, he receives a marginal fitness benefit b.

A social learner can pay two kinds of costs based on his reliance on the two types
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of social learning biases. A social learner pays a fraction of the cost of selective
imitation (cs) based on his reliance on selective imitation (s). This cost includes
the time and energy necessary to find n models and rank them in terms of
success. The deferential imitator also pays a deference cost relative to his
reliance on deferential imitation (d), which has two components. There is a fixed
cost of engaging in deferential imitation (cd) which includes the time and energy
necessary to successfully imitate a model.

There is also a variable cost component to deference, which is determined by a
market-like process. When the adaptive behavior is common (q ≈ 1), the
deference cost will be negligible. When the adaptive behavior is rare (q ≈ 0), an
expert can demand nearly all of the imitator’s marginal gain from switching from
distance learning to deferential imitation. Let D represent the marginal fitness
difference between deferential and distance learning:

D = be(1−m)(I − I)
[
(1− s)q̂ + s

]
− cd (13)

Imitators face a choice: learn from a distance and succeed with probability 1− e,
or pay the cost of deference, gain proximity to the expert, and succeed with
certainty. D thus represents the fitness gain (or loss) of switching from no
deference to full deference, assuming the population engages in selective and
deferential imitation with probabilities s and d. This fitness difference increases
with the benefit of the adaptive behavior (b), the rate of social learning error (e),
the degree to which the population relies on selective imitation (s), and the
frequency of the adaptive behavior in the population (q̂). D decreases with the
migration rate (m), the innovation rate (I), and the fixed-cost associated with
deference (cd).

The evolution of selective imitation

Following Henrich and Gil-White (2001), we study the evolution of
prestige-biased transmission in a sequential fashion, first investigating the
evolution of selective imitation, then the evolution of deferential imitation. In
this section, we assume that there is no deference and find the optimal level of
selectivity in finding an expert from whom to imitate. Setting d = 0, the fitness
function (equation (12)) reduces to:
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w = w0 + b(1−m)
[
Q + I(1−Q)

]
− scs (14)

And the equilibrium frequency of the adaptive behavior (equation (4)) reduces to:

q̂ ≈ (1−m)
I + s(1− I)(1− e)

1− (1−m)(1− I)(1− s)(1− e)
(15)

To find the optimal amount of selectivity, we take the partial derivative of fitness
with respect to selectivity and set it equal to zero (∂w/∂s = 0), which results in
the following quadratic equation:

0 =

b(1−m)(1− e)(1− I)
[
1− (1−m)[I + (1− I)(1− e)]

]
−cs

[
1− (1−m)(1− I)(1− e)

]2

−2scs(1−m)(1− I)(1− e)
[
1− (1−m)(1− I)(1− e)

]
−s2cs(1−m)2(1− e)2(1− I)2

(16)

INSERT FIGURE 3 HERE

Figure 3 plots the optimal level of selectivity for a range of parameter values. To
gain some insight regarding the factors which favor selective imitation, we can
we assume that migration is weak (m� 1) and the rates of social learning error
and innovation are low (e� 1 and I � 1). This simplifies equation (16) to:

0 ≈ b(m + e)− 2scs(m + I + e)− s2cs(1− 2m− 2I − 2e) (17)

When there is no selective imitation (s = 0), this equation reaches it’s maximum
value of b(m + e). So long as there is any migration (m > 0), there is some
probability of committing an error in social learning (e > 0), and there is some
marginal benefit of the adaptive behavior (b > 0), then selection will favor at
least some selective imitation (∂w/∂s|s=0 > 0). That is, non-selective imitation
is not an evolutionary stable equilibrium.

We can find when selection favors a complete reliance on selective imitation, by
setting s = 1 and finding when equation (17) is positive. Because equation (17)
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is quadratic and ∂2w/∂s2 < 0 when 0 ≤ s, there is only one value of s when
∂w/∂s = 0. If ∂w/∂s|s=1 ≥ 0, then it means that this value of s lies at 1 or
more, implying that the evolutionary stable outcome is a complete reliance on
selective imitation.

This threshold occurs when b/cs ≥ 1/(m + e). Obviously, selection will favor
more selective imitation as the ratio of the benefit of the adaptive behavior
relative to the cost of being a selective imitator increases. This condition tells us
that this benefit-cost ratio is related to the inverse of the the sum of migration and
social learning error. When migration and social learning error rates are very low,
then there is little reason to be a selective imitator. The frequency of the adaptive
behavior will be high, and so imitating at random is a good strategy. As
migration or social learning error rates increase, then the frequency of the
adaptive behavior will decrease. When this frequency is low, then it pays to
expend the time and energy to find an expert from whom to model behavior.

To summarize, unless there is no benefit to the adaptive behavior (b = 0), there is
no migration (m = 0), and there is no possibility of committing an error in social
learning (e = 0), selection will favor at least some reliance on selective imitation.
This result is fairly obvious. If there is no benefit to the adaptive behavior, then
there is no purpose being choosy in picking a role model. Similarly, with no
migration and no social learning error, the population will be perfectly adapted to
the environment, and so there is no need to be choosy in picking a role model.
For the parameter values that interest us, we can conclude that selective imitation
will occur to some degree.

More interesting, we see that selection favors a complete reliance on selection
imitation when the ratio of the benefit of the adaptive behavior relative to the cost
of being selective is larger than the inverse of the sum of migration and social
learning error rates. When the cost of being selective is small compared to the
benefit of the adaptive behavior (b� cs), then even small amounts of migration
and social learning error will result in complete reliance on selective imitation.
When this condition is not satisfied, then the population will engage in some
intermediate amount of selective imitation.
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The evolution of deference

Now, let’s assume that full selectivity is favored (s = 1), and find the optimal
level of deference. The fitness function (equation (12)) reduces to:

w = w0 + b(1−m)
[
Q + I(1−Q)

]
− cs − dcd −Dd(1− q̂) (18)

The equilibrium frequency of the adaptive behavior (equation (4)) reduces to:

q̂ ≈ (1−m)
[
I + (1− I)

(
1− e(1− d)

)]
(19)

And, the maximum variable component of deference (equation (13)) reduces to:

D = be(1−m)(I − I)− cd (20)

To find the optimal value of deference, we take the partial derivative of fitness
with respect to the reliance on deference, resulting in:

∂w/∂d = D(1−m)
[
1 + e(1− I)(2d− 1)

]
(21)

From equation (21), we see that fitness increases with deference, so long as
D > 0. If D is positive, selection will favor full reliance on deference (d = 1); if
D is negative, selection favors no deference (d = 0). D will be positive when the
following condition is satisfied:

b

cd

=
1

e(1−m)(1− I)
(22)

This condition is plotted in figure 4. To get a better sense of what this means, we
can assume that innovation rates are low (I � 1), social learning error rates are
low (e� 1), and the rate of migration is low (m� 1), resulting in:

b

cd

≈ 1

e
(23)
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When the rate of social learning error is low (e� 1), then it only pays to be a
deferential imitator when the benefit from the adaptive behavior is much larger
than the cost associated with spending the time with the expert to become an
expert (b� cd). This is fairly obvious; when it’s easy to learn from a distance,
deference only makes sense when it is relatively cheap. As the rate of social
learning error increases, then selection favors deference, even when considerable
time and effort are needed to master the skill.

INSERT FIGURE 4 HERE

Discussion

In this paper, I developed a model of the evolution of prestige-bias. Overall, the
results support Henrich and Gil-White’s (2001) argument: a prestige-bias in
social learning increases ability of the population to adapt to its environment,
and, for a broad range of conditions, selection favors a bias to imitate the
prestigious.

I modeled prestige-bias with two components. Imitators can be selective,
choosing from an expert from a set of models, rather than random with respect to
models. And, imitators can be deferential, paying an expert to gain proximity
and thereby increase the success of social learning, rather than error-prone
distance learners. Relying on random imitation and learning from a distance, the
adaptiveness of a population is constrained by the rates of migration, innovation,
and social learning error. When the rate of innovation is large relative to the sum
of migration and social learning error, the population will be well adapted. Here,
social learning biases don’t greatly improve adaptation.

When the sum of migration and social learning error are large relative to the rate
of innovation, then the population will be poorly adapted. Now, social learning
biases have room to better adapt populations. Selective imitation eliminates the
constraint of low rates of innovation. When imitators expend sufficient time and
energy to find an expert, then there need only be a few individual experts for the
population to be well adapted. Deferential imitation eliminates the constraint of
social learning error. When imitators expend sufficient time, energy, and
resources to defer to an expert, they are certain to acquire the adaptive behavior.
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When these two social learning biases are combined, adaptation is constrained
only by migration.

While it’s not surprise that social learning biases increase adaptation, it’s not
obvious whether natural selection will favor such biases. After all, social learning
biases generate positive externalities, increasing the frequency of adaptive
behavior, thereby making it easier the imitation of others more successful. The
costs associated with biased learning, however, are strictly personal. Selective
imitation is favored when social learning is error prone and migration is high. If
we assume that the benefit of adaptive behavior is large relative to the cost of
ranking a set of models, then we should expect a large degree of selectivity.

Like selective imitation, deferential imitation is favored when social learning is
relatively error prone. This is fairly intuitive; if social learning from a distance
were easy, there would be no reason to defer to an expert. Interestingly, selection
doesn’t favor intermediate amounts of deference. Either full or no deference is
favored. Unlike selective imitation, migration rate opposes deference. This effect
is weak until migration rates are substantial. When migration rates are high, the
adaptive behavior will be more rare. As such, experts can demand more for
access.

In this paper, I have assumed that social learning biases are continuous
characters. However, biases can also be interpreted as dichotomous traits. That
is, individuals either are or are not selective imitators. s and d then become
frequencies within the population, rather than individuals’ degrees of reliance.
Looking at figure 3, there is a range of parameter values in which selection favors
an intermediate amount of selectivity (0 < s < 1). If s is interpreted as the
frequency of selective imitators in the population, rather than the degree of
selectivity, then there will be two types of imitators, selective and un-selective
ones.

Social learning can be a form of scrounging, benefiting the imitator, but not
necessarily the population (Rogers, 1988; Boyd and Richerson, 1995). In this
model, selective imitators pay a cost to increase their success rate. Selective
imitation also provides a benefit to others. By choosing to imitate from an expert,
selective imitators act as filters, increasing the frequency of adaptive behavior in
the population. Because of this, there is scope for second-order scrounging, here
represented by un-selective imitators. The same doesn’t seem to apply to
deference. Selection either favors all deferential imitators or none.
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Table 1: Model Parameters

Parameter Definition
s Degree of selective imitation
d Degree of deferential imitation
q Frequency of the adaptive behavior
I Innovation rate
e Social learning error rate
m Migration rate
n Size of the model set for selective imitators
b Benefit of possessing the adaptive behavior
cs Cost of selective imitation
cd Fixed-cost associated with deferential imitation
D Maximum variable cost associated with deference
Q Probability of successfully imitation
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Figure 1: Frequency of the adaptive behavior when imi-
tation is random with respect to model (s = 0) and imi-
tators learn from a distance (d = 0). The horizontal axis
shows the migration rate on a log scale. Each panel de-
picts a different rate of social learning error, ranging from
0.001 to 0.1. Within each panel, three innovation rates are
depicted, ranging from 0.001 to 0.1.
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Figure 2: Frequency of the adaptive behavior for differ-
ent combinations of biased social learning. The horizon-
tal axis shows the migration rate on a log scale. In the
first panel, imitators are selective with respect to models
(s = 1), but learn from a distance (d = 0). Three different
rates of social learning error are depicted, ranging from
0.001 to 0.1. In the second panel, imitators are not selec-
tive with respect to models (s = 0), but are deferential
(d = 1). Three different rates of innovation are depicted,
ranging from 0.001 to 0.1. For the third panel, imita-
tors are both selective (s = 1) and deferential (d = 1).
For these types, migration is the only force constraining
adaptation. For panels 1 and 3, the size of the model set
is assumed to be large (n � 1). For panel 1, the rate of
innovation is fixed (I = 0.001). So long as the innova-
tion rate is small (I � 1), it has little impact on the rate
of cultural adaptation.
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Figure 3: The optimal degree of selective imitation. The
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Each panel depicts a different rate of social learning error,
ranging from 0.001 to 0.1. Within each panel, different
benefit to cost ratios are depicted, ranging from 5 to 20.
The size of the model set is assumed to be large (n� 1).
The rate of innovation is fixed (I = 0.001). So long as
the innovation rate is small (I � 1), it has little impact
on the results.
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Figure 4: The optimal degree of deferential imitation.
The horizontal axis shows the migration rate on a log
scale. The vertical axis shows the ratio of benefit of the
adaptive behavior to the fixed cost of deference (b/cd). A
range of social learning errors, ranging from 0.05 to 0.2,
are depicted. When the benefit–cost is above the line,
then selection favors full reliance on deferential imitation
(d = 1). When the benefit–cost ratio is below the line, se-
lection favors no deferential imitation (d = 0). The size
of the model set is assumed to be large (n � 1). The
rate of innovation is fixed (I = 0.001). So long as the
innovation rate is small (I � 1), it has little impact on
the results.
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